
RUB

DNA-basiertes Gewässermonitoring

"Genetische und morphologische Charakterisierung aquatischer Invertebraten in einem Fließgewässernetz: eine Fallstudie an der Kleinen Schmalenau (Arnsberger Wald, NRW)"

M.SC. BIANCA PEINERT - VORTRAG ZUR MASTERARBEIT IM RAHMEN DES IFWW-FÖRDERPREISES 2017

Einführung

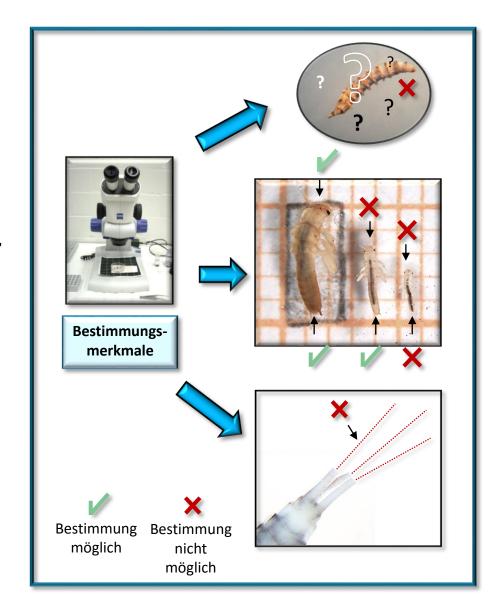
Sauberes Trinkwasser und gewässerökologische Dienstleistungen erfordern Überwachung, Pflege und Renaturierungen von Gewässerökosystemen → EG-WRRL

Als wichtiger Indikator beim Gewässermonitoring dient das "Makrozoobenthos" (wirbellose bodenlebende Tiergemeinschaft).

Jede Tierart benötigt eigene spezifische Bedingungen in ihrem Lebensraum → zur exakten Beurteilung des Gewässers ist daher eine detaillierte Bestimmung notwendig!

Situation

Aktuell wird Makrozoobenthos morphologisch bestimmt!


Problem:

Viele Arten lassen sich

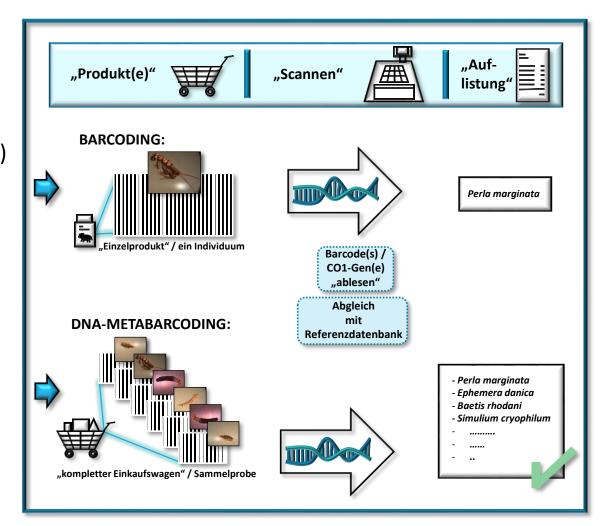
- aufgrund fehlender Bestimmungsmerkmale bei vielen larvalen Stadien,
- in frühen Stadien (da Merkmale noch nicht ausgebildet sind),
- bei (z.B. durch das Sammeln) beschädigten Merkmalen nicht eindeutig bis auf Art-Niveau bestimmen.
- → Das kann zu <u>ungenauen & fehlerhaften Einschätzungen</u> und dadurch zu unwirksamen & kostenintensiven Maßnahmen führen!

Lösungsansatz:

→ DNA-basierte Bestimmungsmethoden

Methode

Prinzip:


DNA-Barcoding

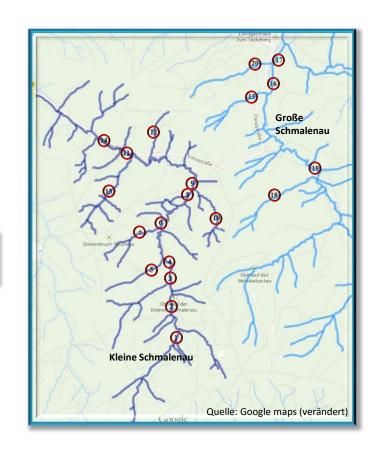
Abgleich eines bestimmten DNA-Sequenzabschnitts (CO1-Gen) mit einer Datenbank (wie der Scanner an der Supermarktkasse ...)

→ Jedoch nur 1 Tier je Durchgang möglich

Weiterentwicklung zum DNA-Metabarcoding

Eine Sammelprobe aus Hunderten von Organismen kann in einem Schritt "gescannt" werden (also nicht mehr jedes Produkt einzeln, sondern direkt der ganze Einkaufswagen …)

Ziele der Masterarbeit


Fallstudie im Arnsberger Wald, NRW

Vergleich von morphologischer und DNA-basierter Bestimmung

→ 20 Probestellen mit jeweils 5 Unterproben (Kleine Schmalenau/Referenzgewässer = 14, Große Schmalenau = 6)

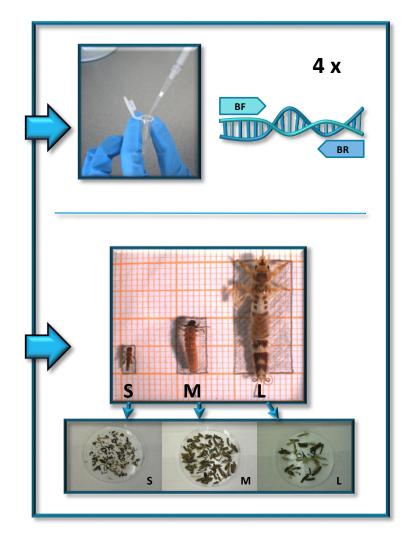
Kann DNA-Metabarcoding verlässliche Daten für Monitoringmaßnahmen liefern?

- → Insgesamt ca. 9000 Individuen
 - 1.) morphologische Bestimmung
 - → Rücksortierung zur ursprünglichen Sammelprobe
 - 2.) <u>DNA-basierte Bestimmung</u> mit Metabarcoding (inkl. Etablierung der Methode)

War die Anzahl der Probestellen ausreichend, um sämtliche Taxa im Gebiet zu erfassen?

→ Rarefaction-Analyse

Etablierung der Methode DNA-Metabarcoding

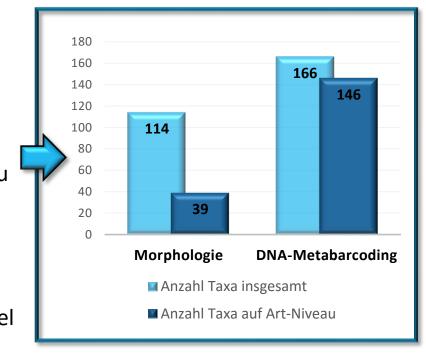

1) Erstellen und Optimieren der DNA-Primer

- → Kopieren und Auslesen des DNA-Barcodes (benötigte Gensequenz)
- → zur Erfassung sämtlicher Arten, die potenziell in einer Probe vorkommen können
- → Test mit 4 Kombinationen neu erstellter Primer und anschließende Verwendung der besten Kombination

2) Größensortierung der Organismen

Wichtig, da in einer Sammelprobe jedes Individuum eine andere Biomasse besitzt!

- → kleine Tiere besitzen nur wenig Biomasse (= wenig DNA) im Vergleich zu großen Tieren (= viel DNA)
- → ohne Größensortierung könnten sehr kleine oder einzeln vorkommende Tiere nicht mehr nachgewiesen werden, da die Menge an DNA großer Organismen dominiert


Ergebnisse Methodenvergleich

20 Probestellen (Kleine und Große Schmalenau)

- **Morphologie:** insg. 114 Taxa → davon 39 Taxa auf Art-Niveau

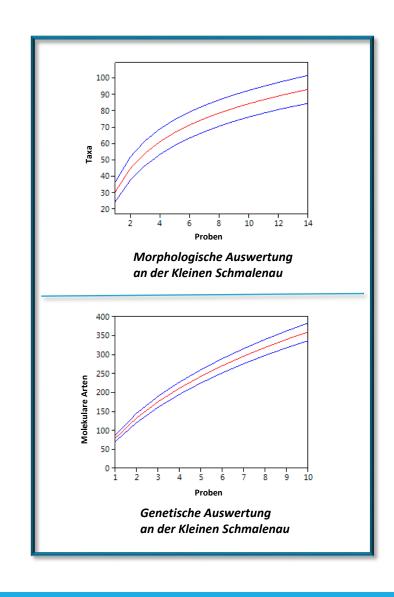
- **DNA-Metabarcoding:** insg. 166 Taxa \rightarrow davon 146 Taxa auf Art-Niveau

Extremer Unterschied bei der Bestimmung von Zweiflügler-Larven (Dipteren), insbesondere Zuckmücken (Chironomiden) → Morphologisch nicht auf Art-Level bestimmbar, jedoch mit DNA-Metabarcoding!

Aber:

6 Taxa konnten nur morphologisch nachgewiesen werden (allerdings i.d.R. nicht auf Art-Niveau).

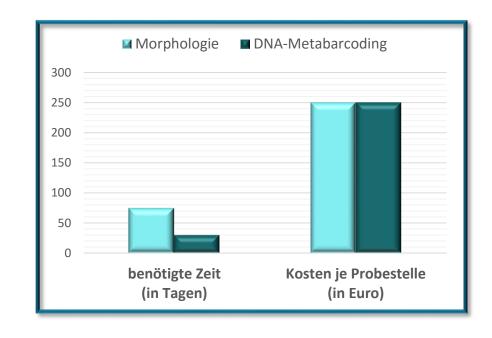
Ergebnis Rarefaction-Analyse


- = **Statistische Analyse:** Schätzung, wie viele Arten noch im Bachsystem vorhanden sind, welche durch weitere Probenahmen erfasst werden könnten
- Untersuchung an der Kleinen Schmalenau (= 14 Probestellen)
- beide Methoden zeigten übereinstimmende Ergebnisse

Beurteilung des Kurvenverlaufs:

→ keine Sättigung der Kurve → mit jeder weiteren Probestelle kamen neue Taxa hinzu → nicht alle Arten/Taxa im untersuchten Gebiet konnten mit der vorhandenen Anzahl an Probestellen erfasst werden!

Fazit:


Die gängige Praxis der Untersuchung von nur einem typischen Gewässerabschnitt reicht nicht aus, um ein Gebiet exakt zu bewerten!

Vergleich von Zeit und Kosten

Zeitaufwand (Bestimmung von 9000 Individuen, 20 Proben)

Morphologie: 75 Arbeitstage — DNA-Metabarcoding: 30 Arbeitstage

<u>Kostenaufwand</u>

Morphologie: ca. 250 - 300 Euro je Probestelle (abhängig vom Bestimmungs-Büro)

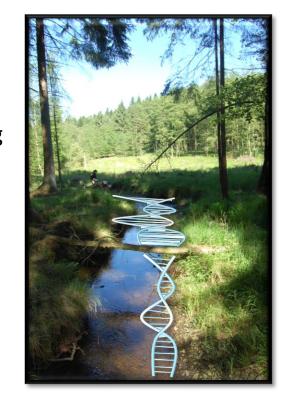
DNA-Metabarcoding: aktuell ca. 250 Euro je Probestelle

(ca. 150 Euro Probenvorbereitung und 100 Euro Sequenzierkosten)

→ Labor- und Sequenzierkosten sinken...

Aktuell bereits vergleichbar!

Fazit


→ DNA-Metabarcoding kann verlässliche Daten für Monitoringmaßnahmen liefern!

- zeitnah
- detailliert
- umfangreiche Datensätze möglich
- vergleichsweise geringer Aufwand
- bessere Gewässerbewertung und dadurch gezieltere Management-Maßnahmen möglich
- vergleichbare Kosten wie bei traditioneller Methode (Morphologie)
- gute Studien-Vergleichbarkeit, da unabhängig von taxonomischer Erfahrung des Sachbearbeiters

Ausblick

To-Do-Liste:

- Da keine Abundanzen (Häufigkeiten der vorkommenden Taxa) beim DNA-Metabarcoding erfassbar sind, müssen aktuelle Bewertungsindizes angepasst werden
- Benötigte Sequenzdatenbank wird mit Hilfe morphologischer Experten aktuell noch vervollständigt (als Grundlage dienen adulte, verlässlich bestimmbare Arten)
- Ausbau der bioinformatischen Pipeline zur Datengenerierung muss erfolgen
- Errichtung örtlicher Sequenzier-Labore

Konkret:

Um die Vorgaben der EG-WRRL zu erfüllen und damit die Wiederherstellung, den Erhalt und die bereitgestellten Dienstleistungen von Fließgewässerökosystemen zu gewährleisten, sollte über die Einbeziehung solcher Techniken nachgedacht werden!

